Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis.

نویسندگان

  • Secil Koseoglu
  • James R Dilks
  • Christian G Peters
  • Jennifer L Fitch-Tewfik
  • Nathalie A Fadel
  • Reema Jasuja
  • Joseph E Italiano
  • Christy L Haynes
  • Robert Flaumenhaft
چکیده

OBJECTIVE Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. METHODS AND RESULTS We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. CONCLUSIONS These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new role for the dynamin GTPase in the regulation of fusion pore expansion

Dynamin is a master regulator of membrane fission in endocytosis. However, a function for dynamin immediately upon fusion has also been suspected from a variety of experiments that measured release of granule contents. The role of dynamin guanosine triphosphate hydrolase (GTPase) activity in controlling fusion pore expansion and postfusion granule membrane topology was investigated using polari...

متن کامل

Excess cholesterol inhibits glucose‐stimulated fusion pore dynamics in insulin exocytosis

Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β-cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β-cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β...

متن کامل

Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity.

The dynamics of the fusion pore that forms between a secretory vesicle and the plasma membrane are important in the regulation of both exocytosis and endocytosis. Here, we describe characteristics of fusion during zymogen granule exocytosis in exocrine pancreatic acinar cells. By using fluorescence recovery after photobleaching techniques, we show that the fusion pore remains open to allow free...

متن کامل

VAMP-7 links granule exocytosis to actin reorganization during platelet activation.

Platelet activation results in profound morphologic changes accompanied by release of granule contents. Recent evidence indicates that fusion of granules with the plasma membrane during activation provides auxiliary membrane to cover growing actin structures. Yet little is known about how membrane fusion is coupled with actin reorganization. Vesicle-associated membrane protein (VAMP)-7 is found...

متن کامل

Control of fusion pore dynamics during exocytosis by Munc18.

Intracellular membrane fusion is mediated by the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. All vesicle transport steps also have an essential requirement for a member of the Sec1 protein family, including the neuronal Munc18-1 (also known as nSec1) in regulated exocytosis. Here, in adrenal chromaffin cells, we expressed a Munc18 mutant with reduced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2013